Prashant V. Kamat

Prashant V. Kamat

Karnatak University, B.S. (1972)
Bombay University, India, M.S. (1974) Ph.D (1979)

view Dr. Kamat's webpage

Phone: (574) 631-5411
Office: 223B Radiation Research Building

Charge Transfer Processes and Energy Conversion

Scientific Interests

Quantum Dot Solar Cells

To develop fundamental understanding of energy harvesting and charge transfer processes in light harvesting assemblies with an objective to elucidate mechanistic and kinetic details and improve light energy conversion effciencies.

Excited state dynamics and surface chemistry of semiconductor quantum dots, designing semiconductor heterostructures for efficient charge separation and elucidation of photoelectrochemical mechanism.


Interfacial charge transfer at semiconductor and metal interface, role of metal nonoparticles as cocataysts in hotocatalysis and design of hybrid assemblies for light energy conversion.

Nanocarbon Chemistry

Electron storage and transport properties of graphene oxide and carbon nanotube based assemblies, design of multifunctional catalyst mat to improve selectivity and efficiency of photocatalytic processes.

Electrochemistry at the Mesoscale

Nanostructure architectures for batteries, fuel cells and solar cells, evaluation of electrocatalytic processes and CO2 reduction.

Back to top

Recent Accomplishments

Kamat S Art Jan 2019

One of the possibilities to engineer the light harvesting features over a broader region and utilize the photons more effectively is to develop a tandem structure of semiconductor QDs such that the absorption of photons within the film is carried out in a systematic and gradient fashion. The photoactive anode prepared by depositing 4.5 nm CdSe quantum dots within the mesocopic film of TiO2 exhibited an increased power conversion efficiency of 3.2 - 3.0% in a two- and three-layered tandem QDSC as compared to 1.97% - 2.81% with single-layered CdSeS.

Electron and energy transfer rates from photoexcited CdSe collodial quantum dots (QDs) to grahpene oxide (GO) and reduced graphene oxide (RGO) were isolated by analysis of excited state deactivation lifetimes as a function of degree of oxidation and charging on GO. Apparent rate constants for energy and electron transfer determined for CdSe-graphene oxide composites were 5.5 x 108 s-1 and 6.7 x 108 s-1 respectively. Additionally, incorporation of graphene oxide in collodial CdSe QD films deposited on conducting glass electrodes was found to enhance the charge separation and electron conduction through the QD film, thus allowing three-dimensional sensitization.

Back to top

Selected Publications

Scheidt, R.A., E. Kerns, P.V. Kamat. "Interfacial Charge Transfer between Excited CsPbBr3 Nanocrystals and TiO2: Charge Injection versus Photodegradation." 9(2018): 5962-5969. link

Kobosko, S.M., P.V. Kamat. "Indium-Rich AgInS2–ZnS Quantum Dots—Ag-/Zn-Dependent Photophysics and Photovoltaics." J. Phys. Chem. C. 122(2018): 14336-14344. link

Ravi, V.K., R.A. Scheidt, J. DuBose, P.V. Kamat. "Hierarchical Arrays of Cesium Lead Halide Perovskite Nanocrystals through Electrophoretic Deposition." J. Am. Chem. Soc. 140(2018): 8887-8894link

Muhammad, A.A., P.V. Kamat, J-H. Bang. "Thiolated Gold Nanoclusters for Light Energy Conversion (Review)." ACS Energy Lett. 3(2018): 840-841. link

Zhang, X., Y-S. Chen, P.V. Kamat, S. Ptasinska. "Probing Interfacial Electrochemistry on a Co3O4 Water Oxidation Catalyst Using Lab-Based Ambient Pressure X-ray Photoelectron Spectroscopy." J. Phys. Chem. C. 122(2018): 13894-13901. link

Draguta, S., O. Sharia, S-J Yoon, M.C. Brennan, Y.V. Morozov, J.S. Manser, P.V. Kamat, W.F. Schneider, M.Kuno. "Rationalizing the Light-Induced Phase Separation of Mixed Halide Organic–Inorganic Perovskites." Nat. Commun. 2(2017): 1860-1861. link


Back to top